线性代数 示例

求出反函数 [[1,-3,0,-2],[3,-12,-2,-6],[-2,10,2,5],[-1,6,1,3]]
[1-30-23-12-2-6-21025-1613]⎢ ⎢ ⎢ ⎢130231226210251613⎥ ⎥ ⎥ ⎥
解题步骤 1
Find the determinant.
点击获取更多步骤...
解题步骤 1.1
Choose the row or column with the most 00 elements. If there are no 00 elements choose any row or column. Multiply every element in row 11 by its cofactor and add.
点击获取更多步骤...
解题步骤 1.1.1
Consider the corresponding sign chart.
|+-+--+-++-+--+-+|∣ ∣ ∣ ∣++++++++∣ ∣ ∣ ∣
解题步骤 1.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
解题步骤 1.1.3
The minor for a11a11 is the determinant with row 11 and column 11 deleted.
|-12-2-61025613|∣ ∣12261025613∣ ∣
解题步骤 1.1.4
Multiply element a11a11 by its cofactor.
1|-12-2-61025613|1∣ ∣12261025613∣ ∣
解题步骤 1.1.5
The minor for a12a12 is the determinant with row 11 and column 22 deleted.
|3-2-6-225-113|∣ ∣326225113∣ ∣
解题步骤 1.1.6
Multiply element a12a12 by its cofactor.
3|3-2-6-225-113|3∣ ∣326225113∣ ∣
解题步骤 1.1.7
The minor for a13a13 is the determinant with row 11 and column 33 deleted.
|3-12-6-2105-163|∣ ∣31262105163∣ ∣
解题步骤 1.1.8
Multiply element a13a13 by its cofactor.
0|3-12-6-2105-163|0∣ ∣31262105163∣ ∣
解题步骤 1.1.9
The minor for a14a14 is the determinant with row 11 and column 44 deleted.
|3-12-2-2102-161|∣ ∣31222102161∣ ∣
解题步骤 1.1.10
Multiply element a14a14 by its cofactor.
2|3-12-2-2102-161|2∣ ∣31222102161∣ ∣
解题步骤 1.1.11
Add the terms together.
1|-12-2-61025613|+3|3-2-6-225-113|+0|3-12-6-2105-163|+2|3-12-2-2102-161|1∣ ∣12261025613∣ ∣+3∣ ∣326225113∣ ∣+0∣ ∣31262105163∣ ∣+2∣ ∣31222102161∣ ∣
1|-12-2-61025613|+3|3-2-6-225-113|+0|3-12-6-2105-163|+2|3-12-2-2102-161|1∣ ∣12261025613∣ ∣+3∣ ∣326225113∣ ∣+0∣ ∣31262105163∣ ∣+2∣ ∣31222102161∣ ∣
解题步骤 1.2
00 乘以 |3-12-6-2105-163|∣ ∣31262105163∣ ∣
1|-12-2-61025613|+3|3-2-6-225-113|+0+2|3-12-2-2102-161|1∣ ∣12261025613∣ ∣+3∣ ∣326225113∣ ∣+0+2∣ ∣31222102161∣ ∣
解题步骤 1.3
计算 |-12-2-61025613|∣ ∣12261025613∣ ∣
点击获取更多步骤...
解题步骤 1.3.1
Choose the row or column with the most 00 elements. If there are no 00 elements choose any row or column. Multiply every element in row 11 by its cofactor and add.
点击获取更多步骤...
解题步骤 1.3.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|∣ ∣+++++∣ ∣
解题步骤 1.3.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
解题步骤 1.3.1.3
The minor for a11a11 is the determinant with row 11 and column 11 deleted.
|2513|2513
解题步骤 1.3.1.4
Multiply element a11a11 by its cofactor.
-12|2513|122513
解题步骤 1.3.1.5
The minor for a12a12 is the determinant with row 11 and column 22 deleted.
|10563|10563
解题步骤 1.3.1.6
Multiply element a12a12 by its cofactor.
2|10563|210563
解题步骤 1.3.1.7
The minor for a13a13 is the determinant with row 11 and column 33 deleted.
|10261|10261
解题步骤 1.3.1.8
Multiply element a13a13 by its cofactor.
-6|10261|610261
解题步骤 1.3.1.9
Add the terms together.
1(-12|2513|+2|10563|-6|10261|)+3|3-2-6-225-113|+0+2|3-12-2-2102-161|1(122513+210563610261)+3∣ ∣326225113∣ ∣+0+2∣ ∣31222102161∣ ∣
1(-12|2513|+2|10563|-6|10261|)+3|3-2-6-225-113|+0+2|3-12-2-2102-161|1(122513+210563610261)+3∣ ∣326225113∣ ∣+0+2∣ ∣31222102161∣ ∣
解题步骤 1.3.2
计算 |2513|2513
点击获取更多步骤...
解题步骤 1.3.2.1
可以使用公式 |abcd|=ad-cbabcd=adcb2×22×2 矩阵的行列式。
1(-12(23-15)+2|10563|-6|10261|)+3|3-2-6-225-113|+0+2|3-12-2-2102-161|1(12(2315)+210563610261)+3∣ ∣326225113∣ ∣+0+2∣ ∣31222102161∣ ∣
解题步骤 1.3.2.2
化简行列式。
点击获取更多步骤...
解题步骤 1.3.2.2.1
化简每一项。
点击获取更多步骤...
解题步骤 1.3.2.2.1.1
22 乘以 33
1(-12(6-15)+2|10563|-6|10261|)+3|3-2-6-225-113|+0+2|3-12-2-2102-161|1(12(615)+210563610261)+3∣ ∣326225113∣ ∣+0+2∣ ∣31222102161∣ ∣
解题步骤 1.3.2.2.1.2
-11 乘以 55
1(-12(6-5)+2|10563|-6|10261|)+3|3-2-6-225-113|+0+2|3-12-2-2102-161|1(12(65)+210563610261)+3∣ ∣326225113∣ ∣+0+2∣ ∣31222102161∣ ∣
1(-12(6-5)+2|10563|-6|10261|)+3|3-2-6-225-113|+0+2|3-12-2-2102-161|
解题步骤 1.3.2.2.2
6 中减去 5
1(-121+2|10563|-6|10261|)+3|3-2-6-225-113|+0+2|3-12-2-2102-161|
1(-121+2|10563|-6|10261|)+3|3-2-6-225-113|+0+2|3-12-2-2102-161|
1(-121+2|10563|-6|10261|)+3|3-2-6-225-113|+0+2|3-12-2-2102-161|
解题步骤 1.3.3
计算 |10563|
点击获取更多步骤...
解题步骤 1.3.3.1
可以使用公式 |abcd|=ad-cb2×2 矩阵的行列式。
1(-121+2(103-65)-6|10261|)+3|3-2-6-225-113|+0+2|3-12-2-2102-161|
解题步骤 1.3.3.2
化简行列式。
点击获取更多步骤...
解题步骤 1.3.3.2.1
化简每一项。
点击获取更多步骤...
解题步骤 1.3.3.2.1.1
10 乘以 3
1(-121+2(30-65)-6|10261|)+3|3-2-6-225-113|+0+2|3-12-2-2102-161|
解题步骤 1.3.3.2.1.2
-6 乘以 5
1(-121+2(30-30)-6|10261|)+3|3-2-6-225-113|+0+2|3-12-2-2102-161|
1(-121+2(30-30)-6|10261|)+3|3-2-6-225-113|+0+2|3-12-2-2102-161|
解题步骤 1.3.3.2.2
30 中减去 30
1(-121+20-6|10261|)+3|3-2-6-225-113|+0+2|3-12-2-2102-161|
1(-121+20-6|10261|)+3|3-2-6-225-113|+0+2|3-12-2-2102-161|
1(-121+20-6|10261|)+3|3-2-6-225-113|+0+2|3-12-2-2102-161|
解题步骤 1.3.4
计算 |10261|
点击获取更多步骤...
解题步骤 1.3.4.1
可以使用公式 |abcd|=ad-cb2×2 矩阵的行列式。
1(-121+20-6(101-62))+3|3-2-6-225-113|+0+2|3-12-2-2102-161|
解题步骤 1.3.4.2
化简行列式。
点击获取更多步骤...
解题步骤 1.3.4.2.1
化简每一项。
点击获取更多步骤...
解题步骤 1.3.4.2.1.1
10 乘以 1
1(-121+20-6(10-62))+3|3-2-6-225-113|+0+2|3-12-2-2102-161|
解题步骤 1.3.4.2.1.2
-6 乘以 2
1(-121+20-6(10-12))+3|3-2-6-225-113|+0+2|3-12-2-2102-161|
1(-121+20-6(10-12))+3|3-2-6-225-113|+0+2|3-12-2-2102-161|
解题步骤 1.3.4.2.2
10 中减去 12
1(-121+20-6-2)+3|3-2-6-225-113|+0+2|3-12-2-2102-161|
1(-121+20-6-2)+3|3-2-6-225-113|+0+2|3-12-2-2102-161|
1(-121+20-6-2)+3|3-2-6-225-113|+0+2|3-12-2-2102-161|
解题步骤 1.3.5
化简行列式。
点击获取更多步骤...
解题步骤 1.3.5.1
化简每一项。
点击获取更多步骤...
解题步骤 1.3.5.1.1
-12 乘以 1
1(-12+20-6-2)+3|3-2-6-225-113|+0+2|3-12-2-2102-161|
解题步骤 1.3.5.1.2
2 乘以 0
1(-12+0-6-2)+3|3-2-6-225-113|+0+2|3-12-2-2102-161|
解题步骤 1.3.5.1.3
-6 乘以 -2
1(-12+0+12)+3|3-2-6-225-113|+0+2|3-12-2-2102-161|
1(-12+0+12)+3|3-2-6-225-113|+0+2|3-12-2-2102-161|
解题步骤 1.3.5.2
-120 相加。
1(-12+12)+3|3-2-6-225-113|+0+2|3-12-2-2102-161|
解题步骤 1.3.5.3
-1212 相加。
10+3|3-2-6-225-113|+0+2|3-12-2-2102-161|
10+3|3-2-6-225-113|+0+2|3-12-2-2102-161|
10+3|3-2-6-225-113|+0+2|3-12-2-2102-161|
解题步骤 1.4
计算 |3-2-6-225-113|
点击获取更多步骤...
解题步骤 1.4.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 1 by its cofactor and add.
点击获取更多步骤...
解题步骤 1.4.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
解题步骤 1.4.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
解题步骤 1.4.1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|2513|
解题步骤 1.4.1.4
Multiply element a11 by its cofactor.
3|2513|
解题步骤 1.4.1.5
The minor for a12 is the determinant with row 1 and column 2 deleted.
|-25-13|
解题步骤 1.4.1.6
Multiply element a12 by its cofactor.
2|-25-13|
解题步骤 1.4.1.7
The minor for a13 is the determinant with row 1 and column 3 deleted.
|-22-11|
解题步骤 1.4.1.8
Multiply element a13 by its cofactor.
-6|-22-11|
解题步骤 1.4.1.9
Add the terms together.
10+3(3|2513|+2|-25-13|-6|-22-11|)+0+2|3-12-2-2102-161|
10+3(3|2513|+2|-25-13|-6|-22-11|)+0+2|3-12-2-2102-161|
解题步骤 1.4.2
计算 |2513|
点击获取更多步骤...
解题步骤 1.4.2.1
可以使用公式 |abcd|=ad-cb2×2 矩阵的行列式。
10+3(3(23-15)+2|-25-13|-6|-22-11|)+0+2|3-12-2-2102-161|
解题步骤 1.4.2.2
化简行列式。
点击获取更多步骤...
解题步骤 1.4.2.2.1
化简每一项。
点击获取更多步骤...
解题步骤 1.4.2.2.1.1
2 乘以 3
10+3(3(6-15)+2|-25-13|-6|-22-11|)+0+2|3-12-2-2102-161|
解题步骤 1.4.2.2.1.2
-1 乘以 5
10+3(3(6-5)+2|-25-13|-6|-22-11|)+0+2|3-12-2-2102-161|
10+3(3(6-5)+2|-25-13|-6|-22-11|)+0+2|3-12-2-2102-161|
解题步骤 1.4.2.2.2
6 中减去 5
10+3(31+2|-25-13|-6|-22-11|)+0+2|3-12-2-2102-161|
10+3(31+2|-25-13|-6|-22-11|)+0+2|3-12-2-2102-161|
10+3(31+2|-25-13|-6|-22-11|)+0+2|3-12-2-2102-161|
解题步骤 1.4.3
计算 |-25-13|
点击获取更多步骤...
解题步骤 1.4.3.1
可以使用公式 |abcd|=ad-cb2×2 矩阵的行列式。
10+3(31+2(-23-(-15))-6|-22-11|)+0+2|3-12-2-2102-161|
解题步骤 1.4.3.2
化简行列式。
点击获取更多步骤...
解题步骤 1.4.3.2.1
化简每一项。
点击获取更多步骤...
解题步骤 1.4.3.2.1.1
-2 乘以 3
10+3(31+2(-6-(-15))-6|-22-11|)+0+2|3-12-2-2102-161|
解题步骤 1.4.3.2.1.2
乘以 -(-15)
点击获取更多步骤...
解题步骤 1.4.3.2.1.2.1
-1 乘以 5
10+3(31+2(-6--5)-6|-22-11|)+0+2|3-12-2-2102-161|
解题步骤 1.4.3.2.1.2.2
-1 乘以 -5
10+3(31+2(-6+5)-6|-22-11|)+0+2|3-12-2-2102-161|
10+3(31+2(-6+5)-6|-22-11|)+0+2|3-12-2-2102-161|
10+3(31+2(-6+5)-6|-22-11|)+0+2|3-12-2-2102-161|
解题步骤 1.4.3.2.2
-65 相加。
10+3(31+2-1-6|-22-11|)+0+2|3-12-2-2102-161|
10+3(31+2-1-6|-22-11|)+0+2|3-12-2-2102-161|
10+3(31+2-1-6|-22-11|)+0+2|3-12-2-2102-161|
解题步骤 1.4.4
计算 |-22-11|
点击获取更多步骤...
解题步骤 1.4.4.1
可以使用公式 |abcd|=ad-cb2×2 矩阵的行列式。
10+3(31+2-1-6(-21-(-12)))+0+2|3-12-2-2102-161|
解题步骤 1.4.4.2
化简行列式。
点击获取更多步骤...
解题步骤 1.4.4.2.1
化简每一项。
点击获取更多步骤...
解题步骤 1.4.4.2.1.1
-2 乘以 1
10+3(31+2-1-6(-2-(-12)))+0+2|3-12-2-2102-161|
解题步骤 1.4.4.2.1.2
乘以 -(-12)
点击获取更多步骤...
解题步骤 1.4.4.2.1.2.1
-1 乘以 2
10+3(31+2-1-6(-2--2))+0+2|3-12-2-2102-161|
解题步骤 1.4.4.2.1.2.2
-1 乘以 -2
10+3(31+2-1-6(-2+2))+0+2|3-12-2-2102-161|
10+3(31+2-1-6(-2+2))+0+2|3-12-2-2102-161|
10+3(31+2-1-6(-2+2))+0+2|3-12-2-2102-161|
解题步骤 1.4.4.2.2
-22 相加。
10+3(31+2-1-60)+0+2|3-12-2-2102-161|
10+3(31+2-1-60)+0+2|3-12-2-2102-161|
10+3(31+2-1-60)+0+2|3-12-2-2102-161|
解题步骤 1.4.5
化简行列式。
点击获取更多步骤...
解题步骤 1.4.5.1
化简每一项。
点击获取更多步骤...
解题步骤 1.4.5.1.1
3 乘以 1
10+3(3+2-1-60)+0+2|3-12-2-2102-161|
解题步骤 1.4.5.1.2
2 乘以 -1
10+3(3-2-60)+0+2|3-12-2-2102-161|
解题步骤 1.4.5.1.3
-6 乘以 0
10+3(3-2+0)+0+2|3-12-2-2102-161|
10+3(3-2+0)+0+2|3-12-2-2102-161|
解题步骤 1.4.5.2
3 中减去 2
10+3(1+0)+0+2|3-12-2-2102-161|
解题步骤 1.4.5.3
10 相加。
10+31+0+2|3-12-2-2102-161|
10+31+0+2|3-12-2-2102-161|
10+31+0+2|3-12-2-2102-161|
解题步骤 1.5
计算 |3-12-2-2102-161|
点击获取更多步骤...
解题步骤 1.5.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 1 by its cofactor and add.
点击获取更多步骤...
解题步骤 1.5.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
解题步骤 1.5.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
解题步骤 1.5.1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|10261|
解题步骤 1.5.1.4
Multiply element a11 by its cofactor.
3|10261|
解题步骤 1.5.1.5
The minor for a12 is the determinant with row 1 and column 2 deleted.
|-22-11|
解题步骤 1.5.1.6
Multiply element a12 by its cofactor.
12|-22-11|
解题步骤 1.5.1.7
The minor for a13 is the determinant with row 1 and column 3 deleted.
|-210-16|
解题步骤 1.5.1.8
Multiply element a13 by its cofactor.
-2|-210-16|
解题步骤 1.5.1.9
Add the terms together.
10+31+0+2(3|10261|+12|-22-11|-2|-210-16|)
10+31+0+2(3|10261|+12|-22-11|-2|-210-16|)
解题步骤 1.5.2
计算 |10261|
点击获取更多步骤...
解题步骤 1.5.2.1
可以使用公式 |abcd|=ad-cb2×2 矩阵的行列式。
10+31+0+2(3(101-62)+12|-22-11|-2|-210-16|)
解题步骤 1.5.2.2
化简行列式。
点击获取更多步骤...
解题步骤 1.5.2.2.1
化简每一项。
点击获取更多步骤...
解题步骤 1.5.2.2.1.1
10 乘以 1
10+31+0+2(3(10-62)+12|-22-11|-2|-210-16|)
解题步骤 1.5.2.2.1.2
-6 乘以 2
10+31+0+2(3(10-12)+12|-22-11|-2|-210-16|)
10+31+0+2(3(10-12)+12|-22-11|-2|-210-16|)
解题步骤 1.5.2.2.2
10 中减去 12
10+31+0+2(3-2+12|-22-11|-2|-210-16|)
10+31+0+2(3-2+12|-22-11|-2|-210-16|)
10+31+0+2(3-2+12|-22-11|-2|-210-16|)
解题步骤 1.5.3
计算 |-22-11|
点击获取更多步骤...
解题步骤 1.5.3.1
可以使用公式 |abcd|=ad-cb2×2 矩阵的行列式。
10+31+0+2(3-2+12(-21-(-12))-2|-210-16|)
解题步骤 1.5.3.2
化简行列式。
点击获取更多步骤...
解题步骤 1.5.3.2.1
化简每一项。
点击获取更多步骤...
解题步骤 1.5.3.2.1.1
-2 乘以 1
10+31+0+2(3-2+12(-2-(-12))-2|-210-16|)
解题步骤 1.5.3.2.1.2
乘以 -(-12)
点击获取更多步骤...
解题步骤 1.5.3.2.1.2.1
-1 乘以 2
10+31+0+2(3-2+12(-2--2)-2|-210-16|)
解题步骤 1.5.3.2.1.2.2
-1 乘以 -2
10+31+0+2(3-2+12(-2+2)-2|-210-16|)
10+31+0+2(3-2+12(-2+2)-2|-210-16|)
10+31+0+2(3-2+12(-2+2)-2|-210-16|)
解题步骤 1.5.3.2.2
-22 相加。
10+31+0+2(3-2+120-2|-210-16|)
10+31+0+2(3-2+120-2|-210-16|)
10+31+0+2(3-2+120-2|-210-16|)
解题步骤 1.5.4
计算 |-210-16|
点击获取更多步骤...
解题步骤 1.5.4.1
可以使用公式 |abcd|=ad-cb2×2 矩阵的行列式。
10+31+0+2(3-2+120-2(-26-(-110)))
解题步骤 1.5.4.2
化简行列式。
点击获取更多步骤...
解题步骤 1.5.4.2.1
化简每一项。
点击获取更多步骤...
解题步骤 1.5.4.2.1.1
-2 乘以 6
10+31+0+2(3-2+120-2(-12-(-110)))
解题步骤 1.5.4.2.1.2
乘以 -(-110)
点击获取更多步骤...
解题步骤 1.5.4.2.1.2.1
-1 乘以 10
10+31+0+2(3-2+120-2(-12--10))
解题步骤 1.5.4.2.1.2.2
-1 乘以 -10
10+31+0+2(3-2+120-2(-12+10))
10+31+0+2(3-2+120-2(-12+10))
10+31+0+2(3-2+120-2(-12+10))
解题步骤 1.5.4.2.2
-1210 相加。
10+31+0+2(3-2+120-2-2)
10+31+0+2(3-2+120-2-2)
10+31+0+2(3-2+120-2-2)
解题步骤 1.5.5
化简行列式。
点击获取更多步骤...
解题步骤 1.5.5.1
化简每一项。
点击获取更多步骤...
解题步骤 1.5.5.1.1
3 乘以 -2
10+31+0+2(-6+120-2-2)
解题步骤 1.5.5.1.2
12 乘以 0
10+31+0+2(-6+0-2-2)
解题步骤 1.5.5.1.3
-2 乘以 -2
10+31+0+2(-6+0+4)
10+31+0+2(-6+0+4)
解题步骤 1.5.5.2
-60 相加。
10+31+0+2(-6+4)
解题步骤 1.5.5.3
-64 相加。
10+31+0+2-2
10+31+0+2-2
10+31+0+2-2
解题步骤 1.6
化简行列式。
点击获取更多步骤...
解题步骤 1.6.1
化简每一项。
点击获取更多步骤...
解题步骤 1.6.1.1
0 乘以 1
0+31+0+2-2
解题步骤 1.6.1.2
3 乘以 1
0+3+0+2-2
解题步骤 1.6.1.3
2 乘以 -2
0+3+0-4
0+3+0-4
解题步骤 1.6.2
03 相加。
3+0-4
解题步骤 1.6.3
30 相加。
3-4
解题步骤 1.6.4
3 中减去 4
-1
-1
-1
解题步骤 2
Since the determinant is non-zero, the inverse exists.
解题步骤 3
Set up a 4×8 matrix where the left half is the original matrix and the right half is its identity matrix.
[1-30-210003-12-2-60100-210250010-16130001]
解题步骤 4
求行简化阶梯形矩阵。
点击获取更多步骤...
解题步骤 4.1
Perform the row operation R2=R2-3R1 to make the entry at 2,1 a 0.
点击获取更多步骤...
解题步骤 4.1.1
Perform the row operation R2=R2-3R1 to make the entry at 2,1 a 0.
[1-30-210003-31-12-3-3-2-30-6-3-20-311-300-300-30-210250010-16130001]
解题步骤 4.1.2
化简 R2
[1-30-210000-3-20-3100-210250010-16130001]
[1-30-210000-3-20-3100-210250010-16130001]
解题步骤 4.2
Perform the row operation R3=R3+2R1 to make the entry at 3,1 a 0.
点击获取更多步骤...
解题步骤 4.2.1
Perform the row operation R3=R3+2R1 to make the entry at 3,1 a 0.
[1-30-210000-3-20-3100-2+2110+2-32+205+2-20+210+201+200+20-16130001]
解题步骤 4.2.2
化简 R3
[1-30-210000-3-20-310004212010-16130001]
[1-30-210000-3-20-310004212010-16130001]
解题步骤 4.3
Perform the row operation R4=R4+R1 to make the entry at 4,1 a 0.
点击获取更多步骤...
解题步骤 4.3.1
Perform the row operation R4=R4+R1 to make the entry at 4,1 a 0.
[1-30-210000-3-20-310004212010-1+116-31+03-20+110+00+01+0]
解题步骤 4.3.2
化简 R4
[1-30-210000-3-20-31000421201003111001]
[1-30-210000-3-20-31000421201003111001]
解题步骤 4.4
Multiply each element of R2 by -13 to make the entry at 2,2 a 1.
点击获取更多步骤...
解题步骤 4.4.1
Multiply each element of R2 by -13 to make the entry at 2,2 a 1.
[1-30-21000-130-13-3-13-2-130-13-3-131-130-1300421201003111001]
解题步骤 4.4.2
化简 R2
[1-30-21000012301-13000421201003111001]
[1-30-21000012301-13000421201003111001]
解题步骤 4.5
Perform the row operation R3=R3-4R2 to make the entry at 3,2 a 0.
点击获取更多步骤...
解题步骤 4.5.1
Perform the row operation R3=R3-4R2 to make the entry at 3,2 a 0.
[1-30-21000012301-13000-404-412-4(23)1-402-410-4(-13)1-400-4003111001]
解题步骤 4.5.2
化简 R3
[1-30-21000012301-130000-231-2431003111001]
[1-30-21000012301-130000-231-2431003111001]
解题步骤 4.6
Perform the row operation R4=R4-3R2 to make the entry at 4,2 a 0.
点击获取更多步骤...
解题步骤 4.6.1
Perform the row operation R4=R4-3R2 to make the entry at 4,2 a 0.
[1-30-21000012301-130000-231-243100-303-311-3(23)1-301-310-3(-13)0-301-30]
解题步骤 4.6.2
化简 R4
[1-30-21000012301-130000-231-2431000-11-2101]
[1-30-21000012301-130000-231-2431000-11-2101]
解题步骤 4.7
Multiply each element of R3 by -32 to make the entry at 3,3 a 1.
点击获取更多步骤...
解题步骤 4.7.1
Multiply each element of R3 by -32 to make the entry at 3,3 a 1.
[1-30-21000012301-1300-320-320-32(-23)-321-32-2-3243-321-32000-11-2101]
解题步骤 4.7.2
化简 R3
[1-30-21000012301-1300001-323-2-32000-11-2101]
[1-30-21000012301-1300001-323-2-32000-11-2101]
解题步骤 4.8
Perform the row operation R4=R4+R3 to make the entry at 4,3 a 0.
点击获取更多步骤...
解题步骤 4.8.1
Perform the row operation R4=R4+R3 to make the entry at 4,3 a 0.
[1-30-21000012301-1300001-323-2-3200+00+0-1+111-32-2+131-20-321+0]
解题步骤 4.8.2
化简 R4
[1-30-21000012301-1300001-323-2-320000-121-1-321]
[1-30-21000012301-1300001-323-2-320000-121-1-321]
解题步骤 4.9
Multiply each element of R4 by -2 to make the entry at 4,4 a 1.
点击获取更多步骤...
解题步骤 4.9.1
Multiply each element of R4 by -2 to make the entry at 4,4 a 1.
[1-30-21000012301-1300001-323-2-320-20-20-20-2(-12)-21-2-1-2(-32)-21]
解题步骤 4.9.2
化简 R4
[1-30-21000012301-1300001-323-2-3200001-223-2]
[1-30-21000012301-1300001-323-2-3200001-223-2]
解题步骤 4.10
Perform the row operation R3=R3+32R4 to make the entry at 3,4 a 0.
点击获取更多步骤...
解题步骤 4.10.1
Perform the row operation R3=R3+32R4 to make the entry at 3,4 a 0.
[1-30-21000012301-13000+3200+3201+320-32+3213+32-2-2+322-32+3230+32-20001-223-2]
解题步骤 4.10.2
化简 R3
[1-30-21000012301-13000010013-30001-223-2]
[1-30-21000012301-13000010013-30001-223-2]
解题步骤 4.11
Perform the row operation R1=R1+2R4 to make the entry at 1,4 a 0.
点击获取更多步骤...
解题步骤 4.11.1
Perform the row operation R1=R1+2R4 to make the entry at 1,4 a 0.
[1+20-3+200+20-2+211+2-20+220+230+2-2012301-13000010013-30001-223-2]
解题步骤 4.11.2
化简 R1
[1-300-346-4012301-13000010013-30001-223-2]
[1-300-346-4012301-13000010013-30001-223-2]
解题步骤 4.12
Perform the row operation R2=R2-23R3 to make the entry at 2,3 a 0.
点击获取更多步骤...
解题步骤 4.12.1
Perform the row operation R2=R2-23R3 to make the entry at 2,3 a 0.
[1-300-346-40-2301-23023-2310-2301-230-13-2310-2330-23-30010013-30001-223-2]
解题步骤 4.12.2
化简 R2
[1-300-346-401001-1-220010013-30001-223-2]
[1-300-346-401001-1-220010013-30001-223-2]
解题步骤 4.13
Perform the row operation R1=R1+3R2 to make the entry at 1,2 a 0.
点击获取更多步骤...
解题步骤 4.13.1
Perform the row operation R1=R1+3R2 to make the entry at 1,2 a 0.
[1+30-3+310+300+30-3+314+3-16+3-2-4+3201001-1-220010013-30001-223-2]
解题步骤 4.13.2
化简 R1
[1000010201001-1-220010013-30001-223-2]
[1000010201001-1-220010013-30001-223-2]
[1000010201001-1-220010013-30001-223-2]
解题步骤 5
The right half of the reduced row echelon form is the inverse.
[01021-1-22013-3-223-2]
(
(
)
)
|
|
[
[
]
]
{
{
}
}
A
A
7
7
8
8
9
9
B
B
4
4
5
5
6
6
/
/
^
^
×
×
>
>
π
π
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
!
!
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]